Assignment 1: Fresnel’s Equations; Reflection and Refraction

1. What is the rms value of the electric field of the radiation from a 100-W light bulb at a distance of 1 m?

2. The electric and magnetic fields \(E \) and \(B \) are three dimensional harmonic waves travelling in space. What is the average value of the Poynting vector \(S \)? What is the direction of \(S \)?

3. The critical angle for total internal reflection for a certain substance is exactly 45\(^\circ\). What is the Brewster angle for external reflection?

4. Light enters normally into glass (\(n = 1.5 \)) from air. What is the percentage of the incident power lost in reflection at the air-glass interface?

5. Using your favourite computational software (such as Matlab), plot the reflectivity \(R = |r|^2 \) for TE polarized light. Assume internal reflection from glass (\(n = 1.5 \)) into air.

6. Use the Fresnel Equations to prove that unpolarized light incident at \(\theta_p = \pi/2 - \theta_t \) results in a polarized reflected beam.

7. Derive and plot the phase difference \(\Delta \phi = \phi_\perp - \phi_n \) versus the angle of incidence \(\theta_i \) when total internal reflection is taking place from a water-air interface. The light is \(P \)-polarized (\(TM \)). The refractive index for water is 1.3. Also illustrate the directions of the polarizations.

8. Polarized light is externally incident on an air-glass interface at an angle of \(\pi/4 \). The refractive index for glass is 1.5. The plane of polarization of the incident light is at an angle of \(\pi/4 \) to the plane of incidence. Find the percentages of reflected and transmitted light.

Chapter 1 and 3 of Bennett; Sections 4.6, 4.7 of Hecht.