Introduction to Thermocouple and Cold Junction Compensation

Experimental Physics Laboratory

Thermocouple

Thermocouple Types

Thermocouple Type	Conductors – Positive	Conductors – Negative
В	Platinum-30% rhodium	Platinum-6% rhodium
E	Nickel-chromium alloy	Copper-nickel alloy
J	Iron	Copper-nickel alloy
K	Nickel-chromium alloy	Nickel-aluminum alloy
N	Nickel-chromium-silicon alloy	Nickel-silicon-magnesium alloy
R	Platinum-13% rhodium	Platinum
S	Platinum-10% rhodium	Platinum
T	Copper	Copper-nickel alloy

Cu-Ni (Constantan)

Temperature Measurement

FOUIVALENT CIRCUITS

MEASURING JUNCTION VOLTAGE WITH A DVM

$$Vm = V1-V2 = const. (T1-T2)$$

Temperature Measurement

Cold junction Compensation

- Thermocouples require some form of temperature reference to compensate for the cold junctions. The most common method is to measure the temperature at thereference junction with a direct-reading temperature sensor. This process is called cold-junction compensation (CJC).
- Because the purpose of CJC is to compensate for the known temperature of the cold junction, another less-common method is forcing the junction from the thermocouple metal to copper metal to a known temperature, such as o ^oC, bysubmersing the junction in an ice-bath, and then connecting the copper wire from each junction to a voltage measurement device.

Law of Intermediate Metals

CJC and J Type Thermocouple

Continued...

References

- http://zone.ni.com/
- www.omega.com